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Abstract. The Kronig–Penney model is used to study the effect of non-linear interaction on the
transmissive properties of both ordered and disordered chains. In the ordered case, the non-linearity
can either localize or delocalize the electronic states depending on both its sign and strength, but
there is a critical strength above which all states are localized. In the disordered case, however,
we found that the transmission decays asT ∼ L−γ around the band edge of the corresponding
periodic system. The exponentγ is independent of the strength of the non-linearity in the case of
disordered barrier potentials, while it varies with this strength for mixed potentials.

1. Introduction

Wave propagation in non-linear media is a subject that has recently been intensively researched
[1]. The study of this phenomenon is of great practical importance in the understanding of
transport properties of superlattices [2], electronic behaviour in mesoscopic devices and optical
phenomena in general. The non-linear Schrödinger equation has been studied extensively in
recent years and served as a prototype for studying non-linear phenomena. The origin of the
non-linearity in the Schr̈odinger equation corresponds to different physical phenomena. In
electronic systems it would correspond to Coulomb interaction between confined electrons
while in a superfluid it corresponds to the Gross–Pitaevsky equation which has attracted much
interest in recent years in the area of Bose–Einstein condensation of trapped bosonic atoms [3].
One then uses the usual technique, as for linear systems, to deduce the transmission and related
properties of interest. However, there are differences from the linear problem. Most important
for us is the fact that the transmission is not uniquely defined. In contrast to the linear case, it
is no longer equivalent to study the transmission for a fixed input (normalized incident wave)
and fixed output (normalized transmitted wave). This non-equivalence originates from the fact
that for a given output, there is one and only one solution to the given problem. In contrast,
for a fixed input, there is at least one solution to the problem but, because of the non-linearity,
there might be more than one solution for a given system length [4]. In particular, it is believed
that this non-uniqueness gives rise to multi-stability and noise, and might give rise to a chaotic
behaviour in certain systems [5,6].

From the theoretical point of view, we expect new effects to arise due to the competition
between the well known localizing effects of the disorder and the delocalizing effect due to the
non-linear interaction in an appropriate regime. Anderson’s theory predicts the wavefunction
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of a non-interacting electron moving in a one-dimensional lattice with on-site energetic disorder
to be localized even for an infinitesimal amount of disorder [7]. Thus in the linear regime but
in the presence of disorder, for a given incident wave with wavenumberk (or an electron with
energyE), the transmission coefficient decays exponentially with the system length. On the
other hand, the decay of the transmission is much slower in non-linear systems. In fact, a
power-law decay of the transmission had already been obtained for non-linear systems with
on-site disorder [4, 8]. However, Kivshar [9], while studying the propagation of an envelope
soliton in a 1D disordered system, has found that the decay is actually not of power-law
type and that strong non-linearity washes out localization effects. This means that above a
certain critical value of the non-linearity strength we can have wave propagation in non-linear
disordered media, which is a situation of great practical interest. Molina and Tsironis [10], on
the other hand, studied the transport properties of a non-linear disordered binary alloy using a
tight-binding Hamiltonian. They confirmed the power-law behaviour of the transmission but
concluded that the decay exponent does not depend on the degree of non-linearity and that
delocalization disappears for large non-linearities.

The problem of wave propagation in non-linear, dynamical classical and quantum systems
was examined mathematically by Frohlichet al [11]. These authors found, for some models of
classical, disordered anharmonic crystal lattices, quasiperiodic lattice vibrations which remain
localized for all times, and there is no transport of energy through the lattice.

The purpose of this work is to study how the decay of the transmission is affected by
non-linear interactions in general for disordered systems and its effect in periodic systems. In
particular, in a recent work on the effect of non-linearity on periodic systems [12], we found
that the bandwidth decreases when the lattice potential has the same sign as the non-linear
interaction coefficient, while in the case of opposite signs the bandwidth increases and some
states appear in the bandgap of the corresponding linear periodic system. We study here the
scaling properties of the transmission at these gap states in order to establish how the nature
of the eigenstates is affected by non-linearity.

2. Model description

In view of the above-mentioned non-uniqueness problem, we will restrict ourselves to a
uniquely defined situation where the output is fixed and one is interested in finding the necessary
input. Leaving this issue aside, we would like to investigate the effect of non-linearity on the
transmission of an ordered and disordered Kronig–Penney lattice model. We use the following
standard model to describe this system [13]:{

− d2

dx2
+
∑
n

(βn + α|9(x)|2)δ(x − n)
}
9(x) = E9(x). (1)

Here9(x) is the single-particle wavefunction atx, βn the potential strength of thenth site,
α the non-linearity strength andE the single-particle energy in units of ¯h2/2m with m being
the electronic effective mass. For simplicity the lattice spacing is taken to be unity throughout
this work. The potential strengthβn is a variable picked up from a random distribution with
−W/2 < βn < W/2 for the mixed-potential case and 0< βn < W for the potential barrier
case (W being the degree of disorder). The local nature of the non-linear interaction in (1)
stems not only from its simplicity as regards numerical computation, but also from the physical
view that many of the interactions leading to non-linearity are of local nature, such as an on-site
Coulomb interaction. From the computational point of view it is more useful to consider the
discrete version of this equation, which is called the generalized Poincaré map and can be
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derived without any approximation from equation (1). It reads [14]

9n+1 =
[
2 cosk +

sink

k
(βn + α|9n|2)

]
9n −9n−1 (2)

where9n is the value of the wavefunction at siten andk = √E. This representation relates
the values of the wavefunction at three successive discrete locations along thex-axis without
restriction on the potential shape at those points and is very suitable for numerical computations.
The solution of equation (2) is carried out iteratively by taking for our initial conditions the
following values at sites 1 and 2:91 = exp(−ik) and92 = exp(−2ik). We consider here an
electron having a wave vectork incident at siteN +3 from the right (by taking the chain length
L = N , i.e.N + 1 scatterers). The transmission coefficient (T ) can then be expressed as

T = 4 sin2 k

|9N+2−9N+3 exp(−ik)|2 . (3)

ThusT depends only on the values of the wavefunction at the end sites,9N+2, 9N+3, which
are evaluated from the iterative equation (2).

3. Results

First let us examine how the allowed bands and bandgaps in the periodic systems (i.e., when
the variableβ has a constant valueB for the whole system) are affected by the non-linear
interaction. The non-linearity is expected under certain conditions to delocalize the electronic
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Figure 1. The transmission coefficient versus the energy for a double barrier withβ = 1, |α| =
0 (solid curve), 0.1 (dashed curve), 0.5 (dotted curve), 2 (dash–dotted curve) and 3 (short-dashed
curve). (a)α > 0, (b)α < 0.
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wavefunction [4,13]. Therefore, in the framework of the transmission spectrum a decrease of
the width of the bandgap will signal delocalization while an increase in the bandgap will signal
a localization effect. To explain qualitatively the behaviour of the transmission for different
signs of the non-linear interaction, we first start with a simple double-barrier structure. In recent
work we examined the transmission spectrum for this structure but we restricted ourselves to
small non-linearity strengths. In figure 1, we show the effect of non-linearity on the first two
resonances of both double-barrier and double-potential-well systems. For the case of barriers,
figure 1(a) shows that for positiveα the resonances get displaced to higher energies and become
sharper. As we increaseα, the valleys deepen, which is a signature of confinement within the
well between the two barriers. For negativeα, figure 1(b) shows that for small values of
|α| < B, the resonances get displaced to lower energies while the valleys increase and get
more and more suppressed as we increaseα in magnitude. Thus one can conclude that for
small values ofα, the gap gets suppressed with increasing values ofα provided that|α| < |B|.
On the other hand, for larger values of the non-linearity,|α| > |B|, the effect is reversed; that
is, the gap gets larger and larger.

If we consider a double potential well instead (figure 2), this behaviour is reversed. Thus
for negative non-linearity (figure 2(b)) the valleys become deeper, while they become more
and more suppressed for positive non-linearity as shown in figure 2(a) and, similarly to the case
for the barriers, the valleys start becoming deeper for|α| > |B|. In summary, the non-linear
interaction seems to delocalize the electronic states when it is repulsive (attractive) for potential
barriers (potential wells) and the non-linearity strength satisfies|α| < |B|. For all of the other
cases it seems to localize the eigenstates. In fact the delocalization can be simply explained
by the fact that the effective potential in (1) tends to vanish. Thus when the on-site potential
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Figure 2. As figure 1, but for a double well (β = −1).
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and the interaction potential (represented by non-linearity) have opposite signs, the effective
potential decreases in equation (1) and vanishes for|α| = |B|. Therefore, the electron tends to
become free in this case. When the non-linear strength increases, the effective potential starts
increasing and the electron will ‘see’ the effective potential.
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Figure 3. − logT versusL for a linear periodic system (α = 0) for both potential barriers,β = 1,
E = 11 (open squares), and potential wells,β = −1,E = 9 (crosses, +).

However, we found in previous work [12] that the delocalization (the narrowing of
the bandgap) in periodic systems appears as resonant transmission states (sometimes not
overlapping) in the gap. We try to examine the nature of these states in the gap of the
corresponding linear periodic system in the presence of non-linearity. To this end, we choose
an energy (E = 11) in the bandgap of the periodic potential barriers and another one (E = 9)
in that of the potential wells. Obviously, in the absence of non-linearity and for finite systems,
the transmission coefficient decreases exponentially with the length scale at these energies
(as shown in figure 3). If we switch on the non-linear interaction (with the sign chosen so
as to have a delocalization, following the above discussion), we find that the transmission
coefficient (or equivalently the wavefunction) becomes Bloch-like both for potential barriers
(figure 4(a)) and for potential wells (figure 4(b)). It is shown in these figures that when the non-
linear strength increases (in absolute value) but remains smaller than the absolute value of the
potential strength (|α| < |B|), the amplitude of the transmission oscillations becomes larger
(while its period increases), reaching a constant unity transmission at the critical non-linearity
strength (|αc| = |B|), while for larger non-linearity strengths (|α| > |B|) the amplitude of
these oscillations keeps increasing and its period decreases. This behaviour means that the
eigenstates in the gap region of the corresponding linear systems become extended even for
a small amount of non-linearity but the transmission is maximum at the critical non-linearity
strengthαc (or in other words the resistance vanishes at this critical strength).

In order to explain this delocalization qualitatively, we note that the non-linear term
in equation (1) contains|92| which behaves as the inverse of the transmission coefficient
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Figure 4. − logT versusL for |α| = 0.1 (solid curve), 0.5 (dashed curve), 2 (thick dotted curve)
and 3 (dash–dotted curve) for (a) potential barriers (β = 1,E = 11 andα < 0) and (b) potential
wells (β = −1,E = 9 andα < 0).

from equation (3). Thus for decreasing transmission this modulus increases, while if the
transmission is close to unity it decreases. Therefore, in the gap region, since the transmission
coefficient decreases with the length scale,|9|2 increases and consequently the effective
potential decreases, which leads to the increase of the transmission and so on. The transmission
oscillates then with the length scale, and its period depends on the speed of the variation of
|9|2 which depends on the strength of the non-linearity. If this strength increases, we reach
rapidly the condition of vanishing effective potential, and the variation of|9|2 is slow (and the
period of oscillations is large), while for very small strengths, this modulus starts increasing
rapidly up to the condition of vanishing effective potential where it becomes very large, and
then this effective potential increases rapidly, leading to smaller periods of the transmission
oscillations. We note here that the transmission never decays with the length even for high
non-linearity strength.

Let us now examine the effect of disorder on the non-linear Schrödinger equation. We
consider here two kinds of disorder as discussed above (mixed disorder and potential barrier
disorder) in order to check the kind of disorder dependence shown by the power-law behaviour
observed in recent work [10, 13]. We note here that we observe a power-law decay of the
transmission near the band edges of the corresponding periodic system (i.e., aroundk = nπ/a,
n being a positive integer, and the lattice parametera taken here to be unity). For all other
energies, the decay of the transmission with the length becomes either exponential or even
stronger (we did not show these results here). In this connection, we would like to remark that
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Figure 5. 〈− logT 〉 versus logL for |α| = 10−15 (open diamonds), 10−10 (crosses, +), 10−5 (open
upright triangles), 10−4 (open squares), 10−3 (stars), 10−2 (open inverted triangles), 10−1 (open
circles) and 1 (crosses,×) for α < 0,W = 4,E = 10 and for 100 disorder realizations. (a) The
mixed case. (b) Potential barriers. Solid lines correspond to the power-law fittings.

the energy taken by Cotaet al [13] (their model is exactly the same as our mixed-potential
model) isE = 5 instead ofE ' 10 (probably due to a misprint in their paper). As found
by Cotaet al [13], for E = 5 the mixed case shows a power-law decay above a critical
non-linearity strength (in fact, they did not fit a power-law behaviour for the strengths of
α = 10−15 and 10−10). In contrast, what we find is that forE = 5, the transmittance decays
exponentially for small disorders and smallα, but faster than exponentially for larger disorder
and/or non-linearity. However, if we chooseE = 10 (which is close to the band edge for a
periodic system but inside the gap), there is a finite-size effect and the power-law decay of the
transmission is observed only above a characteristic lengthLc which seems to decrease with the
non-linearity strength as clearly shown in figure 5(a) (below this lengthLc, the transmission
is exponentially decaying). Furthermore, even for very small non-linearity strengths (e.g.,
α = 10−15 and 10−10) there is a crossover to a power-law decay of the transmittance for
L > Lc. This power-law behaviour is also shown in the case of disordered barrier potentials
(figure 5(b)) but the characteristic lengthLc seems to be smaller. We did not show here the
case of disordered potential wells, because it is similar to that of the potential barriers but for
a positive sign of the non-linearity.

As shown in figure 5, the exponent of the power-law decay,γ , seems to be slightly
dependent on the non-linearity strength for the mixed case while it seems to be almost constant
for disordered barrier potentials. This behaviour is confirmed in figure 6 where we fitted the
power-law behaviour only aboveLc. This figure shows a qualitative agreement with the results
of Cotaet al [13] (except for the fact that there is no criticalα) for a mixed disorder, while
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Figure 6. The exponentγ versus the non-linearity strength log(|α|) for both the mixed case (filled
squares) and potential barriers (open squares). The solid lines are simply guides to the eye.

for barrier-type disorders the exponent is smaller and seems to become independent of the
non-linearity strength. This last result has been also found by Molina and Tsironis [10] for
disordered binary alloys; they first of all used a tight-binding Hamiltonian and then included
the disorder in the non-linear coefficient itself (this is entirely different from the model that
we used). On the other hand, Cotaet al [13] used the same model as we do, but the behaviour
observed by them is not universal and depends on the kind of disorder. Indeed, for disordered
potential barriers the negative non-linearity strength tends to delocalize the eigenstates, as
shown for the double barriers (figure 1(a)) and for the periodic systems (figures 4), while in the
mixed case there is always a competition between the delocalization in potential barriers and
the strong localization in the remaining potential wells which increases the characteristic length
Lc. We would also like to point out that the power-law behaviour becomes very sensitive to
some particular configurations for the large length scale, and tends to give very large values of
the resistance, making the calculations of the average properties unstable. We used different
random generating routines proposed in numerical recipes [15] (i.e. ‘ran0.for’, ‘ran1.for’,
‘ran2.for’ and ‘ran3.for’) and found this behaviour to be independent of which routine was
used. We found also that the instability appears for all of the routines used and the large
statistical fluctuations of the transmission remain at large length scales.

4. Conclusion

We studied in this paper the effect of non-linearity both on double barriers, and on periodic
and disordered systems using a simple Kronig–Penney Hamiltonian. We found in the double-
barrier system a range of non-linearity strengths for which the delocalization takes place and
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a critical non-linearity strength above which the behaviour is reversed (at this critical value
the transparency becomes unity). It seems also that the non-linearity suppresses the gap in
periodic systems. Indeed, for finite-size systems, the transmission for energies corresponding
to the gap in infinite systems is exponentially decaying while, with any small amount of
non-linearity, it becomes Bloch-like. Finally, in the presence of disorder and for the signs
of the non-linearity strength leading to delocalization in periodic systems, we found that the
transmission exhibits power-law decay around the band edges of the corresponding periodic
system, while for other energies the transmission decays at least exponentially if not faster. We
note here that the delocalized states in the non-linear interaction are different in their nature
from those in correlated disorder. Indeed, in correlated disorder this corresponds to resonant-
tunnelling-extended states [16], while in non-linear disordered systems the delocalized states
still exhibit power-law decay. It is found also that this delocalization is broken asymptotically
and the transmission becomes more than exponentially localized, supporting the mathematical
results given by Frohlichet al [11]. The exponent of the power-law behaviour (above theα-
dependent crossover length scaleLc) of the transmittance depends on the non-linearity strength
for mixed systems, in qualitative agreement with the results of Cotaet al [13], while it seems
to be constant for potential barriers, in agreement with the results of Molina and Tsironis [10]
even though the system used by these latter authors is different from ours (they used a tight-
binding model with a disorder in the non-linearity strength itself). Therefore, the variation of
this exponent with non-linearity depends strongly on the type of disorder and is not universal
as claimed recently [13]. On the other hand, this exponent is much larger for mixed systems
than for disordered potential barriers. It is thus interesting to examine within this model the
effect of disordered non-linearity on the transport properties in order to compare with the
results of Molina and Tsironis [10]. Also, this power-law behaviour is observed only above a
characteristic lengthLc. It is thus interesting to study the finite-size effect of this behaviour.
Furthermore, since metallic and insulating behaviours are well characterized by the statistical
properties of their transport coefficients [17], it seems to be adequate to examine the transition
from exponentially localized states in linear disordered systems to power-law-decaying states
in non-linear ones using the above technique.
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